Copied to
clipboard

G = S3×C327D4order 432 = 24·33

Direct product of S3 and C327D4

direct product, metabelian, supersoluble, monomial

Aliases: S3×C327D4, C6221D6, (S3×C6)⋊20D6, C3324(C2×D4), (S3×C62)⋊6C2, C3⋊Dic315D6, (S3×C32)⋊7D4, C3227(S3×D4), C336D49C2, C337D49C2, C3315D43C2, (C3×C62)⋊3C22, C335C45C22, (C32×C6).62C23, (C2×C6)⋊9S32, (S3×C2×C6)⋊8S3, C6.72(C2×S32), D67(C2×C3⋊S3), C37(S3×C3⋊D4), (C2×C3⋊S3)⋊16D6, C223(S3×C3⋊S3), (S3×C3×C6)⋊20C22, (S3×C3⋊Dic3)⋊6C2, C32(C2×C327D4), (C3×S3)⋊3(C3⋊D4), (C6×C3⋊S3)⋊10C22, (C3×C327D4)⋊3C2, C6.25(C22×C3⋊S3), C3213(C2×C3⋊D4), (C22×S3)⋊4(C3⋊S3), (C3×C3⋊Dic3)⋊5C22, (C3×C6).113(C22×S3), (C2×C33⋊C2)⋊6C22, (C2×S3×C3⋊S3)⋊8C2, (C2×C6)⋊4(C2×C3⋊S3), C2.25(C2×S3×C3⋊S3), SmallGroup(432,684)

Series: Derived Chief Lower central Upper central

C1C32×C6 — S3×C327D4
C1C3C32C33C32×C6S3×C3×C6C2×S3×C3⋊S3 — S3×C327D4
C33C32×C6 — S3×C327D4
C1C2C22

Generators and relations for S3×C327D4
 G = < a,b,c,d,e,f | a3=b2=c3=d3=e4=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=fcf=c-1, ede-1=fdf=d-1, fef=e-1 >

Subgroups: 2336 in 388 conjugacy classes, 80 normal (32 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, C22, S3, S3, C6, C6, C6, C2×C4, D4, C23, C32, C32, C32, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C2×D4, C3×S3, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C22×S3, C22×S3, C22×C6, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, S32, S3×C6, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C62, S3×D4, C2×C3⋊D4, S3×C32, S3×C32, C3×C3⋊S3, C33⋊C2, C32×C6, C32×C6, S3×Dic3, D6⋊S3, C3⋊D12, C3×C3⋊D4, C2×C3⋊Dic3, C327D4, C327D4, C2×S32, S3×C2×C6, C22×C3⋊S3, C2×C62, C3×C3⋊Dic3, C335C4, S3×C3⋊S3, S3×C3×C6, S3×C3×C6, C6×C3⋊S3, C2×C33⋊C2, C3×C62, S3×C3⋊D4, C2×C327D4, S3×C3⋊Dic3, C336D4, C337D4, C3×C327D4, C3315D4, C2×S3×C3⋊S3, S3×C62, S3×C327D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, C3⋊D4, C22×S3, S32, C2×C3⋊S3, S3×D4, C2×C3⋊D4, C327D4, C2×S32, C22×C3⋊S3, S3×C3⋊S3, S3×C3⋊D4, C2×C327D4, C2×S3×C3⋊S3, S3×C327D4

Smallest permutation representation of S3×C327D4
On 72 points
Generators in S72
(1 29 7)(2 30 8)(3 31 5)(4 32 6)(9 61 55)(10 62 56)(11 63 53)(12 64 54)(13 37 41)(14 38 42)(15 39 43)(16 40 44)(17 49 72)(18 50 69)(19 51 70)(20 52 71)(21 59 34)(22 60 35)(23 57 36)(24 58 33)(25 66 45)(26 67 46)(27 68 47)(28 65 48)
(1 11)(2 12)(3 9)(4 10)(5 61)(6 62)(7 63)(8 64)(13 46)(14 47)(15 48)(16 45)(17 59)(18 60)(19 57)(20 58)(21 49)(22 50)(23 51)(24 52)(25 44)(26 41)(27 42)(28 43)(29 53)(30 54)(31 55)(32 56)(33 71)(34 72)(35 69)(36 70)(37 67)(38 68)(39 65)(40 66)
(1 58 44)(2 41 59)(3 60 42)(4 43 57)(5 22 38)(6 39 23)(7 24 40)(8 37 21)(9 18 27)(10 28 19)(11 20 25)(12 26 17)(13 34 30)(14 31 35)(15 36 32)(16 29 33)(45 53 71)(46 72 54)(47 55 69)(48 70 56)(49 64 67)(50 68 61)(51 62 65)(52 66 63)
(1 16 24)(2 21 13)(3 14 22)(4 23 15)(5 42 35)(6 36 43)(7 44 33)(8 34 41)(9 47 50)(10 51 48)(11 45 52)(12 49 46)(17 67 54)(18 55 68)(19 65 56)(20 53 66)(25 71 63)(26 64 72)(27 69 61)(28 62 70)(29 40 58)(30 59 37)(31 38 60)(32 57 39)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 28)(26 27)(29 32)(30 31)(33 36)(34 35)(37 38)(39 40)(41 42)(43 44)(45 48)(46 47)(49 50)(51 52)(53 56)(54 55)(57 58)(59 60)(61 64)(62 63)(65 66)(67 68)(69 72)(70 71)

G:=sub<Sym(72)| (1,29,7)(2,30,8)(3,31,5)(4,32,6)(9,61,55)(10,62,56)(11,63,53)(12,64,54)(13,37,41)(14,38,42)(15,39,43)(16,40,44)(17,49,72)(18,50,69)(19,51,70)(20,52,71)(21,59,34)(22,60,35)(23,57,36)(24,58,33)(25,66,45)(26,67,46)(27,68,47)(28,65,48), (1,11)(2,12)(3,9)(4,10)(5,61)(6,62)(7,63)(8,64)(13,46)(14,47)(15,48)(16,45)(17,59)(18,60)(19,57)(20,58)(21,49)(22,50)(23,51)(24,52)(25,44)(26,41)(27,42)(28,43)(29,53)(30,54)(31,55)(32,56)(33,71)(34,72)(35,69)(36,70)(37,67)(38,68)(39,65)(40,66), (1,58,44)(2,41,59)(3,60,42)(4,43,57)(5,22,38)(6,39,23)(7,24,40)(8,37,21)(9,18,27)(10,28,19)(11,20,25)(12,26,17)(13,34,30)(14,31,35)(15,36,32)(16,29,33)(45,53,71)(46,72,54)(47,55,69)(48,70,56)(49,64,67)(50,68,61)(51,62,65)(52,66,63), (1,16,24)(2,21,13)(3,14,22)(4,23,15)(5,42,35)(6,36,43)(7,44,33)(8,34,41)(9,47,50)(10,51,48)(11,45,52)(12,49,46)(17,67,54)(18,55,68)(19,65,56)(20,53,66)(25,71,63)(26,64,72)(27,69,61)(28,62,70)(29,40,58)(30,59,37)(31,38,60)(32,57,39), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,38)(39,40)(41,42)(43,44)(45,48)(46,47)(49,50)(51,52)(53,56)(54,55)(57,58)(59,60)(61,64)(62,63)(65,66)(67,68)(69,72)(70,71)>;

G:=Group( (1,29,7)(2,30,8)(3,31,5)(4,32,6)(9,61,55)(10,62,56)(11,63,53)(12,64,54)(13,37,41)(14,38,42)(15,39,43)(16,40,44)(17,49,72)(18,50,69)(19,51,70)(20,52,71)(21,59,34)(22,60,35)(23,57,36)(24,58,33)(25,66,45)(26,67,46)(27,68,47)(28,65,48), (1,11)(2,12)(3,9)(4,10)(5,61)(6,62)(7,63)(8,64)(13,46)(14,47)(15,48)(16,45)(17,59)(18,60)(19,57)(20,58)(21,49)(22,50)(23,51)(24,52)(25,44)(26,41)(27,42)(28,43)(29,53)(30,54)(31,55)(32,56)(33,71)(34,72)(35,69)(36,70)(37,67)(38,68)(39,65)(40,66), (1,58,44)(2,41,59)(3,60,42)(4,43,57)(5,22,38)(6,39,23)(7,24,40)(8,37,21)(9,18,27)(10,28,19)(11,20,25)(12,26,17)(13,34,30)(14,31,35)(15,36,32)(16,29,33)(45,53,71)(46,72,54)(47,55,69)(48,70,56)(49,64,67)(50,68,61)(51,62,65)(52,66,63), (1,16,24)(2,21,13)(3,14,22)(4,23,15)(5,42,35)(6,36,43)(7,44,33)(8,34,41)(9,47,50)(10,51,48)(11,45,52)(12,49,46)(17,67,54)(18,55,68)(19,65,56)(20,53,66)(25,71,63)(26,64,72)(27,69,61)(28,62,70)(29,40,58)(30,59,37)(31,38,60)(32,57,39), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,38)(39,40)(41,42)(43,44)(45,48)(46,47)(49,50)(51,52)(53,56)(54,55)(57,58)(59,60)(61,64)(62,63)(65,66)(67,68)(69,72)(70,71) );

G=PermutationGroup([[(1,29,7),(2,30,8),(3,31,5),(4,32,6),(9,61,55),(10,62,56),(11,63,53),(12,64,54),(13,37,41),(14,38,42),(15,39,43),(16,40,44),(17,49,72),(18,50,69),(19,51,70),(20,52,71),(21,59,34),(22,60,35),(23,57,36),(24,58,33),(25,66,45),(26,67,46),(27,68,47),(28,65,48)], [(1,11),(2,12),(3,9),(4,10),(5,61),(6,62),(7,63),(8,64),(13,46),(14,47),(15,48),(16,45),(17,59),(18,60),(19,57),(20,58),(21,49),(22,50),(23,51),(24,52),(25,44),(26,41),(27,42),(28,43),(29,53),(30,54),(31,55),(32,56),(33,71),(34,72),(35,69),(36,70),(37,67),(38,68),(39,65),(40,66)], [(1,58,44),(2,41,59),(3,60,42),(4,43,57),(5,22,38),(6,39,23),(7,24,40),(8,37,21),(9,18,27),(10,28,19),(11,20,25),(12,26,17),(13,34,30),(14,31,35),(15,36,32),(16,29,33),(45,53,71),(46,72,54),(47,55,69),(48,70,56),(49,64,67),(50,68,61),(51,62,65),(52,66,63)], [(1,16,24),(2,21,13),(3,14,22),(4,23,15),(5,42,35),(6,36,43),(7,44,33),(8,34,41),(9,47,50),(10,51,48),(11,45,52),(12,49,46),(17,67,54),(18,55,68),(19,65,56),(20,53,66),(25,71,63),(26,64,72),(27,69,61),(28,62,70),(29,40,58),(30,59,37),(31,38,60),(32,57,39)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,28),(26,27),(29,32),(30,31),(33,36),(34,35),(37,38),(39,40),(41,42),(43,44),(45,48),(46,47),(49,50),(51,52),(53,56),(54,55),(57,58),(59,60),(61,64),(62,63),(65,66),(67,68),(69,72),(70,71)]])

63 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3E3F3G3H3I4A4B6A···6M6N···6Z6AA···6AP6AQ 12 
order122222223···33333446···66···66···6612
size11233618542···2444418542···24···46···63636

63 irreducible representations

dim11111111222222224444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3S3D4D6D6D6D6C3⋊D4S32S3×D4C2×S32S3×C3⋊D4
kernelS3×C327D4S3×C3⋊Dic3C336D4C337D4C3×C327D4C3315D4C2×S3×C3⋊S3S3×C62C327D4S3×C2×C6S3×C32C3⋊Dic3S3×C6C2×C3⋊S3C62C3×S3C2×C6C32C6C3
# reps111111111421815164148

Matrix representation of S3×C327D4 in GL8(ℤ)

10000000
01000000
00100000
00010000
00001000
00000100
000000-11
000000-10
,
10000000
01000000
00100000
00010000
0000-1000
00000-100
00000001
00000010
,
10000000
01000000
000-10000
001-10000
0000-1-100
00001000
00000010
00000001
,
10000000
01000000
00-110000
00-100000
00001000
00000100
00000010
00000001
,
01000000
-10000000
00-110000
00010000
00001000
0000-1-100
00000010
00000001
,
01000000
10000000
001-10000
000-10000
0000-1000
00001100
00000010
00000001

G:=sub<GL(8,Integers())| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

S3×C327D4 in GAP, Magma, Sage, TeX

S_3\times C_3^2\rtimes_7D_4
% in TeX

G:=Group("S3xC3^2:7D4");
// GroupNames label

G:=SmallGroup(432,684);
// by ID

G=gap.SmallGroup(432,684);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,135,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^3=d^3=e^4=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=f*c*f=c^-1,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽